
July 1995 Kernel V. 8.0 Systems Manual 427 

Chapter 28 KIDS Programmer Tools: Creating 
Builds 
 
 
KIDS introduces significant revisions to the process of exporting packages 
over the previous export mechanism, DIFROM. For an introduction to KIDS, 
please see the KIDS System Management: Installations chapter. 
 
A functional listing of the KIDS options supporting package export is: 
 

TASK OPTION NAME 
  
Create Build Entry • Create a Build using Namespace 

 
 • Copy Build to Build 

 
 • Edit a Build 

 
Create a Distribution • Transport a Distribution 

 
 
The menu path for these options is: 
 

Kernel Installation and Distribution System... [XPD MAIN]
Edits and Distribution ... [XPD DISTRIBUTION MENU]

Create a Build Using Namespace [XPD BUILD NAMESPACE]
Copy Build to Build [XPD COPY BUILD]
Edit a Build [XPD EDIT BUILD]
Transport a Distribution [XPD TRANSPORT PACKAGE]

 
 
This chapter covers each of these tasks, describing how to accomplish them 
using KIDS options. 
 
 



KIDS Programmer Tools: Creating Builds 

 Kernel V. 8.0 Systems Manual July 1995 428

Build Entries 
 
KIDS stores the definition of a package in a new file, called the BUILD file. 
Individual entries in the BUILD file are called build entries, or builds for 
short. To export a package, you must first define a build entry for it in the 
BUILD file. 
 
Unlike DIFROM, where you re-used the same PACKAGE file entry each time 
you exported a new version of a package, with KIDS you create a new BUILD 
file entry each time you export a package version. One advantage of having 
one BUILD entry per package version is that you have a complete history of 
each version of your package, which makes it easier to compare previous 
versions of a package with the current version. 
 
After you create the build name, KIDS give you the option to choose the type 
of build you are creating. There are three types to choose from: 
 

• Single 
 
• Multi-Package 
 
• Global 

 
 
� Choosing a Build Type Sample 
 

Select Edits and Distribution Option: EDIT a Build
Select BUILD NAME: TEST 5.0

Are you adding 'TEST 5.0' as a new BUILD (the 104TH)? Y <RET>
(Yes)

BUILD PACKAGE FILE LINK: RET
BUILD TYPE: SINGLE PACKAGE// ?

Choose from:
0 SINGLE PACKAGE
1 MULTI-PACKAGE
2 GLOBAL PACKAGE

BUILD TYPE: SINGLE PACKAGE// GLOBAL <RET> GLOBAL PACKAGE

 
 
The following KIDS options, described below, support creating and 
maintaining build entries: 
 

• Create a Build Using Namespace 
 
• Copy Build to Build 
 
• Edit a Build 

 
 



  KIDS Programmer Tools: Creating Builds 

July 1995 Kernel V. 8.0 Systems Manual  429

Create a Build Using Namespace 
 
You can quickly create a build entry and populate its components by 
namespace. The Create a Build Using Namespace option searches for all 
components in the current database matching a given list of namespaces (you 
can exclude by namespace also). The option searches for components of every 
type that match the namespace(s) and populates the build entry with all 
matches it finds on the system. You can then use Edit a Build to fine-tune the 
build entry. 
 
As well as creating a new build entry, you can use this option to populate an 
existing build entry by namespace. In this case, you are asked if you want to 
purge the existing data. If you answer YES, the option purges the build 
components in the entry, and then populates the build components by 
namespace. If you answer NO, the option merges all components matching 
the selected namespaces into the existing build entry; it removes nothing 
already in the current build entry. 
 
 
� Kernel V. 8.0 Component Types 
 

Print Template Bulletin Protocol 
Sort Template Mail Group List Template 
Input Template Help Frame HL7 Application Parameter 
Form Routine HL Lower Level Protocol 
Function Option HL Logical Link 
Dialog Security Key Remote Procedure 

 
 
� Populating a Build Entry by Namespace 
 

Select Edits and Distribution Option: Create a Build Using
Namespace

Select BUILD NAME: ZXGY 1.0
Are you adding 'ZXGY 1.0' as a new BUILD (the 14th)? YES
BUILD PACKAGE FILE LINK: <RET>

Namespace: ZXG
Namespace: -ZXGI
Namespace: <RET>

NAMESPACE INCLUDE EXCLUDE
------- -------
ZXG ZXGI

OK to continue? YES// <RET>
...SORRY, LET ME THINK ABOUT THAT A MOMENT...

...Done.

 
 



KIDS Programmer Tools: Creating Builds 

 Kernel V. 8.0 Systems Manual July 1995 430

� Copying a Build Entry 
 

Select Edits and Distribution Option: COPY Build to Build

Copy FROM what Package: ZXG TEST 1.0
Copy TO what Package: ZXG TEST 1.1

ARE YOU ADDING 'ZXG TEST 1.1' AS A NEW BUILD (THE 5TH)? Y <RET>
(YES)

BUILD PACKAGE FILE LINK: <RET>

OK to continue? YES// <RET>
...HMMM, LET ME PUT YOU ON 'HOLD' FOR A SECOND... ...Done.

 
 
 
Copy Build to Build 
 
You can create a new build entry based on a previous entry using the Copy 
Build to Build option. Note that with KIDS, you must create a new build 
entry for each new version of a package. This option gives you a way to 
quickly copy a previous build entry to a new entry. You can then use the Edit 
a Build to fine-tune the copied build entry. 
 
If you choose an existing entry to copy into, the option purges the existing 
entry first before copying into it. 
 
 
 
Edit a Build 
 
Using the Edit a Build option, you can create new build entries and edit all 
parts of existing build entries. Edit a Build is a VA FileMan ScreenMan-
driven option. There are four main screens in the Edit a Build. The following 
sections describe in detail each part of a build entry and how you can edit 
each part. 
 
 
KIDS Build Checklists 
 
KIDS Build Checklists are provided in an appendix. They are designed in 
conjunction with the Edit a Build option to help you plan your build entries. 
 
 



  KIDS Programmer Tools: Creating Builds 

July 1995 Kernel V. 8.0 Systems Manual  431

� Functional Layout, Edit a Build 
 

Screen Build Section Build Sub-Section 
Screen 1 Build Name  
 Date Distributed  
 Description  
 Environment Check Routine  
 Pre-Install Routine  
 Post-Install Routine  
 Pre-Transportation Routine  
Screen 2 Files and Data Partial DD Definition 
  Send Data Definition 
   
Screen 3 Build Components Print Template 
  Sort Template 
  Input Template 
  Form 
  Function 
  Dialog 
  Bulletin 
  Mail Group 
  Help Frame 
  Routine 
  Option 
  Security Key 
  Protocol 
  List Template 
  HL7 Application Parameter 
  HL Lower Level Protocol 
  HL Logical Link 
  Remote Procedure 
Screen 4 Install Questions  
 Required Builds  
 Package File Link  
 Package Tracking  

 
 
Edit a Build: Name & Version, Build Information 
 
When you invoke the Edit a Build option, KIDS loads a four-page ScreenMan 
form. The first screen of the form lets you edit the following package settings:  
 

• Name 
 
• Date Distributed 
 
• Description 
 
• Environment Check Routine 



KIDS Programmer Tools: Creating Builds 

 Kernel V. 8.0 Systems Manual July 1995 432

 
• Pre-Install Routine 
 
• Post-Install Routine 
 
• Pre-Transportation Routine 

 
 
Build Name 
 
The name of a build entry is where KIDS stores both the package's name and 
version number. The build name must be a package name, followed by a 
space and then followed by a version number. This means that every version 
of a package requires a separate entry in the BUILD file. One way that this 
is an advantage is that you have a record of the contents of every version of a 
package that you export. 
 
 
� Screen 1 of Edit a Build Sample 
 

Edit a Build PAGE 1 OF 4
Name: ZXG TEST 1.0 TYPE: SINGLE PACKAGE

------------------------------------------------------------------------

Name: ZXG DEMO 1.0

Date Distributed: AUG 29,1994

Description:

Environment Check Routine:

Pre-Install Routine: ZXGPRE

Post-Install Routine: ZXGPOS

COMMAND: Press <PF1>H for help Insert

Pre-Transportation Routine:

 
 
 
Edit a Build: Files 
 
The second screen of Edit a Build is where you enter all the files to export 
with your package. For each file, you can choose whether or not to send data 
with the file definition. 
 
 



  KIDS Programmer Tools: Creating Builds 

July 1995 Kernel V. 8.0 Systems Manual  433

Data Dictionary Update 
 
The installing site is no longer asked whether they want to override data 
dictionary updates: data dictionary updates are determined entirely by how 
you, the developer, export the file. There are two settings in KIDS you can 
use to determine whether KIDS should update a file's data dictionary at the 
installing site. 
 
If you answer YES to Update the Data Dictionary, the data dictionary will be 
updated at the installing site. If you answer NO, the only time the data 
dictionary is updated is if the file does not exist on the installing system. 
 
You can enter M code in the Screen to Determine DD Update field. The code 
should set the value of $T. If $T is true, KIDS installs the data dictionary; if 
$T=0, KIDS does not. The screen is only executed if the data dictionary 
already exists on the installing system, however; if the data dictionary 
doesn't already exist, the file is installed unconditionally (the screen is not 
executed). You can use the code in this field, for example, to examine the 
target environment to determine whether to update a data dictionary 
(providing the data dictionary already exists). 
 
 
Sending Security Codes 
 
With KIDS, you can specify on a file-by-file basis whether to send security 
codes. For each file, you can set Send Security Code to either YES or NO. 
 
If you answer YES to send security codes, KIDS sends the security codes of 
the files on the development system. KIDS only updates security codes at the 
installing site on new files (i.e., files that don't already exist), however. 
Security codes for a file are not updated at the installing site if the file 
already exists. 
 
 



KIDS Programmer Tools: Creating Builds 

 Kernel V. 8.0 Systems Manual July 1995 434

� Screen 2 of Edit a Build: Selecting Files 
 

Edit a Build PAGE 2 OF 4
Name: ZXG DEMO 1.0 Type: SINGLE PACKAGE
------------------------------------------------------------------------

File List (Name or Number)

NEW PERSON

COMMAND: Press <PF1>H for help Insert

 
 
 
� Data Dictionary and Data Settings 
 

 
 

Edit a Build PAGE 2 OF 4
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE
-----------------------------------------------------------------------

File List (Name or Number)

File: NEW PERSON

Send Full or Partial DD: PARTIAL

Update the Data Dictionary: YES Send Security Code: NO

Screen to Determine DD Update

Data Comes With File: YES

COMMAND: Press <PF1>H for help Insert

DD Export Options



  KIDS Programmer Tools: Creating Builds 

July 1995 Kernel V. 8.0 Systems Manual  435

Sending Full or Partial Data Dictionaries 
 
KIDS supports sending out full data dictionaries (the entire file definition), 
and partial data dictionaries (specified fields in a file). 
 
 
Full DD (All Fields) 
 
To send the entire data dictionary, answer FULL at the Send Full or Partial 
DD prompt. In this case, all field definitions are exported. If you are sending 
data, you must export the FULL data dictionary. 
 
 
Partial DD (Some Fields) 
 
If you answer PARTIAL at the "Send Full or Partial DD" prompt, KIDS lets 
you choose what data dictionary level(s) to export. A data dictionary level is 
either the file number (top level of the file) or a sub-data dictionary number 
of a multiple (also known as a subfile). You can export any subfile, no matter 
how deep (every subfile's data dictionary number will be selectable). 
 
For each data dictionary number (level) you choose to export, you can select 
which fields to export at that data dictionary level: 

 
• If you don't specify any fields, all fields are sent. This includes 

any multiple fields (subfiles) at the selected data dictionary level and 
all descendant subfiles. 

 
• If you do specify fields, only the specified fields are sent. When 

you specify individual fields within a data dictionary level, however, 
you cannot choose any multiples at that data dictionary level. 

 
 
Unlike DIFROM, KIDS does not require sending the .01 field of the file if you 
send a partial data dictionary. Also, KIDS does not require sending out a 
multiple's entire data dictionary when you export a field within a multiple; 
you can choose to export a specific field within a multiple, at any depth. 
 
When you export the .01 field of a multiple (by itself or by sending the entire 
multiple), KIDS also sends the "parent field" of the multiple (that is, the field 
at the next higher level of the data dictionary holding the multiple). 
 
Whenever you export a multiple, all "parents" of the multiple all the way up 
to the .01 field of the file must exist at the installing site, or else you must 
export all "parents" (higher data dictionary levels) yourself. Otherwise, the 
multiple will not be installed. 
 
Note that certain attributes (identifiers, "ID" nodes, etc.) are considered file 
attributes (as opposed to field attributes), and so are sent only when you send 
a full DD. They aren't sent with a partial DD. 



KIDS Programmer Tools: Creating Builds 

 Kernel V. 8.0 Systems Manual July 1995 436

 
 
� Data Dictionary Settings Screen 
 

 
 
� Partial DD: Choosing DD Levels (Top Level and Sub-File) to Send 
 

Edit a Build PAGE 2 OF 4
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE
------------------------------------------------------------------------

File List (Name or Number)

NEW PERSON (File-top level)
DMMS UNITS (sub-file)
ALIAS (sub-file)

DEFINED FORMATS FOR LM (sub-file)

COMMAND: Press <PF1>H for help Insert

Data Dictionary Number

DD Export Options

 

Edit a Build PAGE 2 OF 4
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE
-----------------------------------------------------------------------

File List (Name or Number)

File: NEW PERSON

Send Full or Partial DD: PARTIAL

Update the Data Dictionary: YES Send Security Code: NO

Screen to Determine DD Update

Data Comes With File: YES

COMMAND: Press <PF1>H for help Insert

DD Export Options



  KIDS Programmer Tools: Creating Builds 

July 1995 Kernel V. 8.0 Systems Manual  437

 
 
Choosing What Data to Send with a File 
 
When you send data, you can send all of the data in a file. But KIDS also lets 
you send a subset of a file's data to installing sites. 
 
In the Screen to Select Data field, you can enter M code to screen data. The M 
code should set $T; if $T is set to 1, the entry is sent, and if $T is set to 0, the 
entry is not sent. At the moment your code for the screen is executed, the 
local variable Y is set to the internal entry number of the entry being 
screened, and the M naked indicator is set to the global level @fileroot@(Y,0). 
Therefore, you can use the values of Y and the naked indicator in your 
screen.  
 
In the Data List field, you can select a search template. The contents of the 
template will be the entries that are exported. 
 
If you choose both a screen and a search template, the screen is applied to the 
entries stored in the search template. 
 
 
� Settings for Sending Data 
 

Edit a Build PAGE 2 OF 4
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE
------------------------------------------------------------------------

File List (Name or Number)

Site's Data: OVERWRITE

Resolve Pointers: YES May User Override Data Update: YES

Data List:

Screen to Select Data

COMMAND: Press <PF1>H for help Insert

Data Export Options

DD Export Options

 
 
 



KIDS Programmer Tools: Creating Builds 

 Kernel V. 8.0 Systems Manual July 1995 438

Determining How Data is Installed at the Receiving Site 
 
When you send data with a file, KIDS gives you several options about how 
the data is sent. There are four ways KIDS can install file entries at the 
receiving site: 
 

ADD ONLY IF 
NEW FILE 

Installs data at the installing site only if this file is 
new to the site or if there is no data in this file at the 
site. 
 

MERGE If no matching entry is found, the incoming entry is 
added. When the incoming entry matches an existing 
entry on the system, site fields that are non-null are 
preserved. Only null fields in a matching site entry 
are overwritten by incoming values. 
 
KIDS does not send out cross-references with the 
data. When you merge the data, however, KIDS re-
indexes and creates new cross-references. Also, when 
you merge the data, KIDS does not delete the old 
cross-references for that data. 
 

OVERWRITE If no matching entry is found, the incoming entry is 
added. When the incoming entry matches an existing 
entry on the system, site fields that are non-null are 
overwritten by incoming data. Values in the site's 
fields are preserved when the incoming field value is 
null, however. 
 

REPLACE If no matching entry is found, the incoming entry is 
added. When the incoming entry matches an existing 
entry at the top level of a file, all fields in the 
existing entry that are fields in the incoming data 
dictionary are purged; then field values for the new 
entry are brought in. Values in fields that aren't part 
of the incoming data dictionary are preserved. 
 
KIDS does not send out cross-references with the 
data. When you replace the data, however, KIDS re-
indexes and creates new cross-references. Also, when 
you replace the data, KIDS deletes any old cross-
references for that data. 
 

 With multiples, if the .01 field of an incoming 
multiple matches the .01 field of an existing multiple, 
the existing multiple entry is completely purged, and 
the data from the incoming multiple replaces the 
current multiple entirely; values for fields in the 
existing multiple that aren't in the incoming data 
dictionary are not restored. 



  KIDS Programmer Tools: Creating Builds 

July 1995 Kernel V. 8.0 Systems Manual  439

 
 
You can specify different settings for separate files; within a file, however, all 
data must be installed in one of these four ways. 
 
You can give the installing site the choice of overriding the data update. If 
you set May User Override Data Update to YES, the installing site has the 
choice of whether to bring in data that has been sent with this file. They are 
not given the choice of how to install data, however (add only if new file vs. 
merge vs. overwrite vs. replace). If you set this field to NO, the installing site 
cannot override bringing in data. 
 
 
How KIDS Matches Incoming Entries with Existing Entries 
 
When KIDS installs VA FileMan data, it treats incoming entries differently 
depending on whether the entry is a new entry for the file or the incoming 
entry matches an existing entry in the file. 
 
KIDS decides if an incoming entry is new or matches an existing entry by 
checking, in order: 
 

1. The B index of the file or multiple, or the .01 field if there is no B 
index. 

 
2. The internal entry number (ien) of the entry (if applicable). 
 
3. The identifiers of the entry (if applicable). 

 
 
First, KIDS makes a tentative match based on the B index. If there is no B 
index, KIDS goes through the .01 field entries of the file one-by-one looking 
for a match. 
 
NOTE: The B cross-reference holds the name as a subscript. The maximum 

length of subscripts is defined for each operating system and is stored 
in the MUMPS OPERATING SYSTEM file. KIDS uses this length 
[for example, 63 (default) or 99] as the limit of characters to compare. 

 
 
If a match (either by the B cross-reference or by the first piece of the zero 
node) is not found, the incoming entry is considered new and is added to the 
file. If a match or matches are found, two additional checks are made to 
determine whether any of the existing entries are a match. 
 
KIDS next checks whether the iens of any tentatively matched entries are 
related. If the file has a defined .001 field, the ien is a meaningful attribute of 
an entry. In this case, the iens must match. If the input transform of the .01 



KIDS Programmer Tools: Creating Builds 

 Kernel V. 8.0 Systems Manual July 1995 440

field contains DINUM, it operates the same way as a .001 field. If the ien is 
meaningful, and no match is found, the incoming entry is considered new and 
is added to the file. 
 
If the possibility of a match remains after checking iens, KIDS performs a 
final check based on identifiers.  
 
A well-designed file uses one or more identifiers to act as key fields, so that 
each entry is unique with respect to name and identifiers. If identifiers exist 
on either the target file or the incoming data dictionary, KIDS checks the 
values of all such identifier fields. The value of each identifier field must be 
the same for the existing entry and the incoming entry to be considered a 
match. Only the internal value of the identifier field is checked (so if an 
identifier is a pointer field, problems could result). Only identifiers that have 
valid field numbers are used in this process. 
 
If there is still more than one matching entry after checking .01 fields, iens, 
and identifiers, the lowest numbered entry in the site's file is considered a 
match for the incoming entry for the file. On the other hand, if no match is 
found after checking .01 fields, iens, and identifiers, the entry is considered 
new and is added to the file. 
 
 
Limited Resolution of Pointers 
 
A new feature of data export provided by KIDS is resolving pointers. For each 
file exported with data, you can choose whether to perform pointer resolution 
on that file's pointer fields (with the exception of .01 fields, identifier fields, 
and pointer fields pointing to other pointer fields). 
 
KIDS does not resolve pointers for .01 fields and identifier fields in files or 
subfiles, nor fields that point to other pointer fields. KIDS can resolve 
pointers, however, for all other pointer fields in a given file or subfile. 
 
When you don't resolve pointers, and the file being installed has pointer 
fields, data entries for that file are installed with whatever numerical pointer 
values are in the pointer fields. In which case, there is a good chance that the 
pointer fields no longer point to the intended entries in the pointed to file. 
 
Resolution of pointers remedies this by exporting the free text value of the 
pointed-to entry. When KIDS has finished installing all files and data entries 
at the installing site, it begins the process of resolving pointers (if any files 
are set to have pointers resolved). 
 
For each field in an entry that is a pointer field, KIDS does a lookup in the 
pointed to file for the free text value of the original pointed-to entry. If it 
finds an exact and unique match, it resolves the original pointer by storing 
the ien of the new matching entry in the pointer field. If it can't find an exact 
match, either because there are no matching entries or there are multiple 



  KIDS Programmer Tools: Creating Builds 

July 1995 Kernel V. 8.0 Systems Manual  441

matching entries, then the pointer field is left blank, and KIDS displays an 
error message. 
 
Resolution of pointers works with pointed-to entries that are themselves 
variable pointers. In these cases, it stores which file the pointed-to entry was 
pointing to, and then resolves the pointer in the appropriate target file only. 
 
Once all pointers are resolved, KIDS re-indexes each file. Each time KIDS 
finishes resolving pointer fields in a given file, it re-indexes that file. 
 
 
Re-Indexing Files 
 
Once all new data has been added to all files, KIDS re-indexes the files. If 
any of the files have compiled cross-references, the compiled cross reference 
routines are rebuilt. Then, if any data was sent for a file, KIDS re-indexes 
ALL cross references for ALL the records in the file. Only the SET logic is 
executed. 
 
 
Data Dictionary Cleanup 
 
If you change the definition of a field or remove a cross-reference, you must 
delete the field or cross reference or otherwise clean it up on the target 
account during the Pre-install routine. You must completely purge the target 
site's data dictionary of the old field definition, even if you are re-using the 
same node and piece for a new field. This cleanup ensures that the data 
dictionary will not end up with an inconsistent structure after the 
installation. 
 
You no longer need to clean up word processing fields in the data dictionary, 
however. Before KIDS, updated data dictionary field attributes stored in 
word processing fields (e.g., field description or technical description) did not 
completely overwrite a pre-existing attribute when installed. If the incoming 
value had fewer lines than the pre-existing one, the install of the data 
dictionary did not delete the surplus lines automatically; this deletion had to 
be done in the pre-install. KIDS, on the other hand, completely replaces the 
values of word processing fields in data dictionaries. 
 
 
Edit a Build: Components 
 
In the third screen in the Edit a Build option, you can select the components 
of a package to include in the build. 
 
KIDS lets you enter an explicit list of components for each component type. 
You are not restricted by namespace. You can select items for each type of 
component simply by choosing them. Items can also be selected with the * 
wildcard and the – exclusion sign. 



KIDS Programmer Tools: Creating Builds 

 Kernel V. 8.0 Systems Manual July 1995 442

 
With most component types, the permissible installation actions are SEND 
TO SITE and DELETE AT SITE. Some component types, however, have 
additional installation actions available; the special cases are discussed on 
the following pages. 
 
 
� Kernel V. 8.0 Component Types 
 

Print Template Bulletin Protocol 
Sort Template Mail Group List Template 
Input Template Help Frame HL7 Application Parameter 
Form Routine HL Lower Level Protocol 
Function Option HL Logical Link 
Dialog Security Key Remote Procedure 

 
 
� Screen 3 of Edit a Build: Components 
 

Edit a Build PAGE 3 OF 4
Name: ZXG 1.0 TYPE: SINGLE PACKAGE
------------------------------------------------------------------------

Build Components

PRINT TEMPLATE (0)
SORT TEMPLATE (0)
INPUT TEMPLATE (0)
FORM (0)
FUNCTION (0)
DIALOG (0)
BULLETIN (0)
MAIL GROUP (0)
HELP FRAME (0)
ROUTINE (0)
OPTION (0)
SECURITY KEY (0)
PROTOCOL (0)
LIST TEMPLATE (0)
HL7 APPLICATION PARAMETE (0)
HL LOWER LEVEL PROTOCOL (0)
HL LOGICAL LINK (0)
REMOTE PROCEDURE (0)

COMMAND: Press <PF1>H for help Insert

 
 
 
NOTE: This is an expanded view of this screen in order to show you all of the 

currently available component types. You will have to scroll through 
the list in order to see all of the available types. 

 
 



  KIDS Programmer Tools: Creating Builds 

July 1995 Kernel V. 8.0 Systems Manual  443

Edit a Build: Options and Protocols 
 
Menus and Protocols are similar to other component types, except for menus 
and protocols, which have more than the standard SEND TO SITE and 
DELETE AT SITE installation actions. 
 
 
NOTE: Beginning with Kernel V. 8.0, you can no longer send out an option 

with an attached scheduling frequency. Scheduling of options has 
been moved out of the OPTION file and into the new OPTION 
SCHEDULING file. One advantage to this is that a developer's 
scheduling settings will no longer overwrite a site's scheduling 
settings. 

 
 
To indicate to the site that an option should be scheduled regularly, you 
should fill in the SCHEDULING RECOMMENDED field for the option. You 
can enter Yes, No, or Startup. This indicates to the site whether they should 
regularly schedule the option or not. You should list the actual frequency you 
recommend in the option's description. The site can then use the TaskMan 
option Print Recommended for Queuing Options to list all options that 
developers have recommended scheduling for. 
 
 
� Option and Protocol Installation Actions 
 

Installation 
Action 

Description 

SEND TO SITE Menu or protocol is installed at the site; any existing 
version already at the site is completely purged 
beforehand. 
 

DELETE AT 
SITE 
 

Menu or protocol is deleted at site. 
 

USE AS LINK 
FOR MENU 
ITEMS 

Designates a menu or protocol to be used as a link. The 
menu or protocol is not exported to the site; instead, its 
name is sent so that any item you link to it as a menu 
item or protocol (and send) becomes a sub-item on the 
corresponding menu or protocol at the site. KIDS does 
not disable options and protocols which have an Action 
of USE AS LINK FOR MENU ITEMS. 
 



KIDS Programmer Tools: Creating Builds 

 Kernel V. 8.0 Systems Manual July 1995 444

MERGE MENU 
ITEMS 

All fields in the menu or protocol except for items are 
purged and replaced by the incoming values for those 
fields. Any items at the site that don't match incoming 
items are left as is. Any items that do match incoming 
items are completely replaced by the incoming items. 
 
The advantage with this action is that it preserves 
locally added items at the site. The disadvantage is that 
if you have removed items, the removed items are not 
purged at the site. 
 

 
 
Edit a Build: Routines 
 
Routine selection is done based on pointers to entries in the ROUTINE file, 
but this file is not automatically updated when programs are saved and 
deleted on an M system. So before adding routines to a build entry, you 
should run KIDS' Update Routine File option. Be sure to update all the 
routines and routine namespaces that you'll need to select for your build. 
 
When selecting routines for the build, you can select individual routines by 
typing in their individual names. You can select a namespace group of 
routines by using the * wildcard. For example, to include all routines in the 
namespace XQ, type in XQ*. You can exclude routines by inserting the - 
exclusion sign before either a single name or a wild-carded namespace. For 
example, to exclude all routines in the XQI namespace, type -XQI*. 
 
For each routine, you can choose one of two actions: SEND TO SITE and 
DELETE AT SITE. The default action is SEND TO SITE. If you choose 
DELETE AT SITE, the routine will be deleted at the installing site. 
 
Installers of KIDS packages have a choice to update routines across multiple 
CPUs. If they choose to do this, routines will be installed (or deleted) across 
all CPUs the site selects. KIDS will display various status messages while 
each CPU is updated. Sites cannot automatically install routines in the site's 
manager accounts, however;  you still must instruct the site to manually 
install any routine that goes in the manager's account. 
 
 



  KIDS Programmer Tools: Creating Builds 

July 1995 Kernel V. 8.0 Systems Manual  445

� Choosing Routines 
 

Edit a Build PAGE 3 OF 4
NAME: XU 99.0 TYPE: SINGLE PACKAGE
------------------------------------------------------------------------

BUILD COMPONENTS

+XQSRV4 SEND TO SITE
XQSTCK DELETE AT SITE
XQT SEND TO SITE
XQT1 SEND TO SITE
XQT2 SEND TO SITE
XQT3 SEND TO SITE
XQT4 SEND TO SITE
XQTOC SEND TO SITE
XQUSR SEND TO SITE

COMMAND: Press <PF1>H for help Insert

ROUTINE

 
 
 
Edit a Build: Dialog Entries (DIALOG File) 
 
VA FileMan, starting with V. 21.0, supports the capability for other packages 
to store their dialog in the VA FileMan DIALOG file. Some advantages to 
using the DIALOG file for user interaction include: 
 

• Separating user interaction from other program functionality. This is a 
helpful step for creating GUI interfaces. 

 
• Reusing dialog. When dialog is stored in the DIALOG file, it can be re-

used. 
 
• Easily generating package error lists. If error lists are stored in 

DIALOG file, there is a single point of access to print a complete list of 
errors. 

 
• Implementing alternate language interfaces. Multiple language 

versions of a dialog can be exported; also, entries for one language's set 
of dialogs can be swapped with entries for another language's set of 
dialogs. 

 
 
KIDS allows you to export entries your package maintains in the DIALOG 
file. Simply select which DIALOG entries you want to include in your 



KIDS Programmer Tools: Creating Builds 

 Kernel V. 8.0 Systems Manual July 1995 446

package, as you would for any other package component, and choose an 
installation action for each item (the default is SEND TO SITE, the other 
permissible choice is DELETE AT SITE). 
 
For more information on using the DIALOG file, please see the VA FileMan 
Programmer Manual for V. 21.0 and later. 
 
 
Edit a Build: Forms 
 
You do not need to select which blocks to send when you send VA FileMan 
ScreenMan forms. You only need to select the form: KIDS sends all blocks 
associated with a form once you've chosen the form. 
 
 
Edit a Build: Templates 
 
When you select templates (either print, sort, or input templates), KIDS 
appends the file number to the name of the template. This ensures that a 
unique entry exists for each template (since two templates of the same name 
could exist for two different files).  
 
 
� Selecting Templates 
 

Edit a Build PAGE 3 OF 4
Name: KERNEL 8.0T14 TYPE: SINGLE PACKAGE
------------------------------------------------------------------------

Build Components

+XUSER LIST FILE #200 SEND TO SITE
XUSERINQ FILE #200 SEND TO SITE
XUSERVER DISPLAY FILE #19.081 SEND TO SITE
XUSERVER HEADER FILE #19.081 SEND TO SITE
XUUFAA FILE #3.05 SEND TO SITE
XUUFAAH FILE #3.05 SEND TO SITE
XUUSEROPTH FILE #19.081 SEND TO SITE
XUUSEROPTP FILE #19.081 SEND TO SITE

COMMAND: Press <PF1>H for help Insert

PRINT TEMPLATE

 
 
 



  KIDS Programmer Tools: Creating Builds 

July 1995 Kernel V. 8.0 Systems Manual  447

Transporting a Distribution 
 
Once you have created a build entry and added all of the files and 
components you want to export, you are ready to export your package. KIDS 
uses a transport global as the mechanism to move data. INIT routines are no 
longer the transport mechanism (which removes the old restrictions on the 
amount of data you can export). Transport globals can then be written to 
distributions, which are HFS files. Use the TRANSPORT option to generate 
transport globals and create distributions. 
 
Depending on how you answer the questions in this option, the transport 
globals this option generates can be stored: 
 

• In a distribution, which is then ready to export as a host file. 
 
• In a PackMan message (to be sent over the network). 
 
• In the ^XTMP global on your local system. 

 
 
If you choose to transport the distribution via a host file enter HF after the 
"Transport through (HF)Host File or (PM)PackMan:" prompt and enter a host 
file name after the "Enter a Host File" prompt. The option creates transport 
globals and puts them in the distribution (HFS file) that you specify. 
 
 
� Creating a Distribution 
 

Select Edits and Distribution Option: Transport a Distribution

Enter the Package Names to be transported. The order in which
they are entered will be the order in which they are installed.

First Package Name: ZXG DEMO 1.0
Another Package Name: ZXG TEST 1.0
Another Package Name: <RET>

ORDER PACKAGE
1 ZXG DEMO 1.0
2 ZXG TEST 1.0

OK to continue? NO// YES
Transport through (HF)Host File or (PM)PackMan: HF <RET> Host File

Enter a Host File: ZXG_EXPT.DAT
Header Comment: export of ZXG package <RET>

ZXG DEMO 1.0...
ZXG TEST 1.0...

Package Transported Successfully

Select Edits and Distribution Option:



KIDS Programmer Tools: Creating Builds 

 Kernel V. 8.0 Systems Manual July 1995 448

 
 
If you don't enter a host file name, KIDS creates the transport globals and 
stores them in your local ^XTMP global, but does not write them to a 
distribution file. 
 
If you've previously created a transport global for this package in the ^XTMP 
global and it still exists, KIDS asks you if you want to use what was already 
generated or if you want to re-generate the transport globals instead. 
 
If you want the distribution sent via a PackMan message enter PM after the 
"Transport through (HF)Host File or (PM)PackMan:" prompt. You can only 
send one transport global per PackMan message, however. 
 
 
� Sending via Network (PackMan Message) 
 

Select Edits and Distribution Option: TRANSport a Distribution

Enter the Package Names to be transported. The order in which
they are entered will be the order in which they are installed.

First Package Name: TEST 1.1
Another Package Name: <RET>

ORDER PACKAGE
1 TEST 1.1

OK to continue? NO// YES
Transport through (HF)Host File or (PM)PackMan: PM <RET> PackMan

TEST 1.1...
No Package File Link
Subject: TEST
Please enter description of Packman Message

TEST <RET>

Created by DOE,JOHN at KERNEL.ISC-SF.VA.GOV (KIDS) on MONDAY,
10/07/96 at 15:21
Do you wish to secure this message? No// ?

If you answer yes, this message will be secured to insure that
what you send is what is actually received.
Do you wish to secure this message? No// Y <RET> (Yes)
Enter the scramble hint: THIS IS A HINT <RET>
Enter scramble password: (password is not echoed back)
Securing the message, now. This may take a while !!!

Send mail to: DOE,JOHN Last used MailMan: 04 Oct 96 15:28
Select basket to send to: IN// <RET>

And send to: <RET>

 
 



  KIDS Programmer Tools: Creating Builds 

July 1995 Kernel V. 8.0 Systems Manual  449

Splitting a Distribution Across Diskettes 
 
You can also split a distribution across diskettes. You are only offered this 
choice if the M implementation you are using is MSM, and the host file name 
you enter for the distribution starts with "A:" or "B:". If this is the case, you 
will be asked, by the Transport a Distribution option: 
 
 

Size of Diskette (1K blocks):

 
 
You can enter a number from 0 to 1440, where 0 means unlimited size. KIDS 
will then split the distribution into pieces, with each piece containing the 
number of 1K blocks you specify (if you choose a number other than 0). KIDS 
will ask, between pieces: 
 
 

Insert the next diskette and Press the return key:

 
 
KIDS uses the same filename for each diskette, so be sure to use a separate 
diskette for each piece of the distribution file. You need to label the diskettes 
sequentially, e.g., #1, #2, etc. The installing site will be asked to insert the 
diskettes by sequence number when they install the distribution. 
 
 
When to Transport More than One Transport Global in a 
Distribution 
 
If several packages are unrelated, they should be sent as separate 
distributions. This gives the installing site optimum flexibility to decide when 
to do each installation. 
 
If a group of packages is to be installed together, however, and if there are 
dependencies between the packages, sending the packages together in one 
distribution can give you more control over how the group of packages is 
installed. If in some cases only packages A and B should be installed, and in 
other situations only packages A and C should be installed, and you can do 
the determination yourself (in each package's environment check routine), 
sending the group of packages in a single distribution lets you control which 
packages in the distribution actually are installed. 
 
When you are using PackMan messages to send your package (rather than 
using a distribution), you are limited to sending only one transport global per 
PackMan message. 
 
 



KIDS Programmer Tools: Creating Builds 

 Kernel V. 8.0 Systems Manual July 1995 450

Multi-Package Builds 
 
Multi-Package builds contain a list of other builds and lists their installation 
order. A Multi-Package build will transport this list of builds (template or 
meta-build). 
 
 
� Multi-Package Builds Sample 
 

Edit a Build PAGE 1 OF 1
Name: TEST 3.0 TYPE: MULTI-PACKAGE
------------------------------------------------------------------

Name: TEST 3.0

Date Distributed: OCT 9,1996

Description:

Install Order Packages or Patches
1 TEST 1.0
2 TEST 1.1

__________________________________________________________________

COMMAND: Press <PF1>H for help Insert

 
 
Exporting Globals with KIDS 
 
KIDS in Kernel V. 8.0 supports the installation of global distributions 
(distributions that export globals). KIDS now supports the creation of global 
distributions by developers. Any number of globals can be included in a build. 
You are given the opportunity to run an environment check before installing 
the global and post-install routines after installing the globals. You also are 
given the choice of killing globals prior to installing new globals at a site. If 
you answer No to this question, the global is merged with any previously 
installed global at the site. For more information on global distributions, see 
the "KIDS System Management: Installations" chapter. 
 
 



  KIDS Programmer Tools: Creating Builds 

July 1995 Kernel V. 8.0 Systems Manual 450a 

� Exporting Global Distributions Sample 
 

Edit a Build PAGE 1 OF 1
Name: TEST 5.0 TYPE: GLOBAL PACKAGE
------------------------------------------------------------

Name: TEST 5.0

Date Distributed: OCT 9,1996

Description:

Environment Check Rtn.: Post-Install Rtn.:

Globals Kill Global Before Install?
TMP(100) NO

____________________________________________________________

COMMAND: Press <PF1>H for help Insert

 
 
 
Creating Transport Globals that Install Efficiently 
 
There are some choices you can make when designing your build entries, to 
make your transport globals install efficiently at the receiving site. In 
particular, you can improve the efficiency of exporting data entries using 
KIDS: 
 

• When exporting data, you can use the ADD IF NEW option to only add 
entries if the file didn't exist prior to the installation. Data is only 
added if the file is created by the installation. You can use this option 
to avoid re-exporting data for static files. 

 
• When exporting data, send only the data you need to (KIDS no longer 

forces you to send all data in a file when you only need to send some of 
the data). You can select a subset of data to send by using a screen, a 
search template, or both a screen and a search template. 

 
• When exporting data, resolve pointers only if necessary, because 

resolving pointers adds significant overhead to the process of loading 
data entries. 

 
 





KIDS Programmer Tools: Creating Builds 

450b Kernel V. 8.0 Systems Manual July 1995 

 


	Chapter 28	KIDS Programmer Tools: Creating Builds
	Build Entries
	Create a Build Using Namespace
	Copy Build to Build
	Edit a Build
	Transporting a Distribution
	Creating Transport Globals that Install Efficiently


